skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hsu, Chih-Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new version of the US National Science Foundation National Center forAtmospheric Research (NSF NCAR) thermosphere-ionosphere-electrodynamicsgeneral circulation model (TIEGCM) has been developed and released. Thispaper describes the changes and improvements of the new version 3.0since its last major release (2.0) in 2016. These include: 1) increasingthe model resolution in both the horizontal and vertical dimensions, aswell as the ionospheric dynamo solver; 2) upward extension of the modelupper boundary to enable more accurate simulations of the topsideionosphere and neutral density in the lower exosphere; 3) improvedparameterization for thermal electron heating rate; 4) resolvingtransport of minor species N(2D); 5) treating helium as a major species;6) parameterization for additional physical processes, such as SAPS andelectrojet turbulent heating; 7) including parallel ion drag in theneutral momentum equation; 8) nudging of prognostic fields near thelower boundary from external data; 9) modification to the NO reactionrate and auroral heating rate; 10) outputs of diagnostic analysis termsof the equations; 11) new functionalities enabling model simulations ofcertain recurrent phenomena, such as solar flares and eclipse. Wepresent examples of the model validation during a moderate storm andcompare simulation results by turning on/off new functionalities todemonstrate the related new model capabilities. Furthermore, the modelis upgraded to comply with the new computer software environment at NSFNCAR for easy installation and run setup and with new visualizationtools. Finally, the model limitations and future development plans arediscussed. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  2. Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. 
    more » « less
  3. Abstract The largest obstacle to managing satellites in low Earth orbit (LEO) is accurately forecasting the neutral mass densities that appreciably impact atmospheric drag. Empirical thermospheric models are often used to estimate neutral densities but they struggle to forecast neutral densities during geomagnetic storms when they are highly variable. Physics‐based models are thus increasingly turned to for their ability to describe the dynamical evolution of neutral densities. However, these models require observations to constrain dynamical state variables to be able to forecast mass densities with adequate fidelity. The LEO environment has scarce neutral state observations. Here, we demonstrate, in simulated experiments, a reduction in orbit errors and neutral densities using a physics‐based, data assimilation approach with ionospheric observations. Using a coupled thermosphere‐ionosphere model, the Thermosphere Ionosphere Electrodynamics General Circulation Model, we assimilate Constellation Observing System for Meterology, Ionosphere, and Climate electron density profiles (EDPs) derived from radio occultation (RO) observations. We use the EDPs to directly update neutral states, improving errors for neutral temperature by 70% and neutral winds by 20%. Updated neutral temperature and neutral winds additionally improve helium composition errors by 60% and 40%, respectively. Improved neutral density estimates correspond to a reduction in orbit errors of 1.2 km over 2 days, a 70% reduction over a no‐assimilation control, and a 29 km improvement over 9 days. This study builds on the results of our earlier work to further develop and demonstrate the potential of using a vast and growing RO data source, with a physics‐based model, to overcome our limited number of neutral observations. 
    more » « less